
Zeszyty Naukowe WSFiP Nr 3/2013

46

Jerzy Stefan RESPONDEK
∗

DOUBLE POINTER SHIFTING WINDOW C++

ALGORITHM FOR THE MATRIX MULTIPLICATION

Summary
The main objective of this article is to make use of the pointer effectiveness in the matrix

multiplication task. To achieve this we proposed an advanced fast pointer-oriented

matrix multiplication numerical recipe. The main obstacle to this aim is iterating

through a matrix column, because it requires jumping over a separate tables. As a

solution to this trouble I proposed a shifting window in a form of a table of auxiliary

double pointers. The ready-to-use C++ source code is presented. Finally, we performed

thorough time execution tests of the new C++ matrix multiplication algorithm. That

tests proved the high efficiency of the proposed algorithm.

Key words: Numerical Recipes, C++, Numerical Algebra, Linear Algebra, Matrix

Multiplication, Pointers, Smart Pointers, Iterators

Introduction

The C++ programming language is based on the C programming

language and enables to create the object-oriented software with the

speed of the C programs. The C++ was designed by Bjarne Stroustrup

([3],[4]). The C programming language was designed by Kernighan,

Ritchie ([2]) as a highly effective tool to operate system designing. Apart

from the operating systems, the majority of the severe contemporary

software is still programmed in the C++ language. The high efficiency of

the software coded in C++ follows, to a large extent, from C++ pointers.

The pointers appear also in other general purpose languages but in the

C++ programs they are usually the sole part of the algorithms code. The

pointer-oriented C++ code closes the programming style to the direct

assembler programming causing its unmatched effectiveness.

∗

dr Jerzy Stefan Respondek, Bielsko-Biała School of Finance and Law; Silesian

University of Technology Faculty of Automatic Control, Electronics and Computer

Science.

Double pointer shirting window C++ algorithm…

47

The main objective of this article is to make use of the pointer

effectiveness in one of the fundamental numerical algorithms, i.e. in the

matrix multiplication. The main obstacle to this aim is iterating through a

matrix column, because it requires jumping over a separate tables. As a

solution to this trouble I proposed a shifting window in a form of a table

of auxiliary double pointers.

Neither of the available monographs on numerical recipes makes use

of the pointers, even if the algorithms they present are coded in C++.

This probably follows from the fact that in the past the numerical

algorithms were coded with the use of such languages as Fortran, Algol

and Pascal. In those languages the pointers are used in a very limited

range. Thus in this article we want to show how we can improve the

execution time thanks to involving the C++ pointers in the numerical

algorithms by the example of the matrix multiplication. We proposed the

pointer-oriented matrix multiplication algorithm 0 that turned out to be

significantly more efficient than the classic one.

The paper is organized as follows: chapter 1 provides the necessary

theoretical background for the matrix multiplication problem and storing

the matrices as a series of dynamic tables, in chapter 3 we present the

general paradigm of the pointer programming, in chapter 4 we present

the classic matrix multiplication algorithm, in chapter 5 we present the

new fast C++ matrix multiplication algorithm, in chapter 6 we carry out

its thorough performance tests, in chapter 7 we give some conclusions.

1. Theoretical background

1.1 Matrices from the mathematical point of view

The sole matrix definition can be found e.g. in the book Bellman [1]

p.37. The m n× -dimensional matrix A we will denote as
1,..,
1,..,

i mij
j n

A a
=

=

� �= � � .

The objective of the article is to present a fast C++ algorithm for matrix

multiplication. Thus let us first refer to the formal definition of the matrix

multiplication.

Jerzy Stefan Respondek

48

1.1.1 Matrix Multiplication Definition (Bellman [1] pp.39)

Let us be given two matrices
1,..,
1,..,

i mij
j n

A a
=

=

� �= � � ,
1,..,
1,..,

i nij
j l

B b
=

=

� �= � � . As a result

of the multiplication of the A matrix by the B matrix we define the

matrix
1,..,
1,..,

i mij
j l

C c
=

=

� �= � � with entries expressed by (1):

1

, 1,..., , 1,...,
n

ij ik kj

k

c a b i m j l
=

= = =� (1)

1.2 Storing the matrices in the memory as a series of dynamic tables

The most frequently used and flexible way to store the matrix in the

memory is the so-called double pointer structure. This topic is presented

in the most general case, for the arbitrary order of the pointers, in the [5].

Let us assume that we want to store an m n× -dimensional A matrix of

the general data type T in a memory. The appropriate solution is:

• declare the double pointer of the type ���,

• assign to it the address of the m-element table of the ���type

pointers,

• assign to each of the above single pointers the addresses of the n-

element T-type tables.

We illustrated the idea of storing the matrices as a series of dynamic

tables in figure 1.

4
9

Figure 1. Representation of the matrices in the memory as a series of dynamic tables

������ ��������

��������

������	�

������
�

���������������������� ������������ ����������	� ����������
���

���������� ���������� ��������	� ��������
���

���������� ���������� ��������	� ��������
���

�����	���� �����	���� �����	��	� �����	��
���

�����
���� �����
���� �����
��	� �����
��
���

50

The proper C++ type definition code has the following form:
�

� ����������	��

����
�
�	������
���
� ��
� � ����������
� � ����
��
�	��
��
� ���

where data is the double pointer indicating the matrix data while

rows and cols are the number of matrix rows and columns, respectively.

The task of storing in a memory a m n× -dimensional matrix A of the

data type T can be performed by the following C++ code:
� �

� ����
������
�
� ��
��
��������	��
������
� ���������������������
� �
!������"������##$�
� � �����������������������
�

Such a way of a computer matrix representation is used by all

professional mathematical packages, like Matlab® and similar. It has two

important advantages:

• The dimensions of the allocated matrix can be dynamically

determined during the program execution. Thus there is no need to

reserve an additional amount of memory during the code compilation;

we use exactly as much memory as we need.

• We gain fast random access to each element of the allocated matrix.

In order to get the value of the ija element of the A matrix the only

code we have to write is �������. It is both concise and efficient. It does

not need to perform any index multiplication. On the contrary, in the

simple 1D table matrix representation, to get the ija element we have

to code: ����
����which is neither convenient nor efficient.

2. The C++ pointer-based programming paradigm fundamentals

The pointers in C++ play a much greater role than in other

programming languages. The fundamental C reference book [2] devotes

a broad separate chapter 5 to the pointer notion. The most important

advantage of the pointers is the high efficiency of the sequential table

operations coded with their use. In Table 1 we showed, by the exemplary

task of summing the table elements, its two opposite implementations: by

the table indexing and by the pointer iteration.

Double pointer shirting window C++ algorithm…

51

Table 1. Summing the table elements by two implementation paradigms

�$��
� �����

��%�&"""��
�"�"��
�
� �
!����

��"���&""��##$�
� �
�#����%������
�

'$�
� �����

��%�&"""�������%�
�"�"��
�
� �
!������"���&""��##$�
� �
�#����##���
�

From Table 1 we can conclude the following reasons of the pointer-

based programming execution time boost:

• In the table-based implementation (cell A) we have to determine the

memory address for each summed table element in each loop

iteration again and again in compliance with the expression:

�������������������������������. It is worth to notice that in the table

implementation it is necessary to perform an additional integer

multiplication in each loop iteration.

• In the pointer-based implementation (cell B), in order to sequentially

sum up the table elements the only task we have to perform in each

loop iteration (apart from the sole element addition) is to shift the

pointer value to the next table element by a constant equal to

sizeof(float).

We illustrated the idea of pointer-based table access compared with

the classic one in Figure 2.

Figure 2. The classic table access vs. pointer based table access

The main objective of this article is to apply the C++ pointer

programming paradigm in order to obtain highly efficient matrix

multiplication.

������ ������ ����	� ������ �������� ������	�

 tab[i] == *(tab + i*sizeof(T))

 tab[i+1] == *(tab + (i+1)*sizeof(T))

tab[i]==*p++

 tab[i+2] == *(tab + (i+2)*sizeof(T))

tab[i+1]==*p++ tab[i+2]==*p++

Jerzy Stefan Respondek

52

3. The classic matrix multiplication algorithm

The matrix multiplication definition (Bellman [1] p.39) leads directly

to the following, well known, function:
�

����������	��

�����
(����)��

�	*���
��*�������+!���
������ ,�����
������

,'����
������,)$��
��
� ��������
� �
!������"�����
��
��##$�
� � �
!����-�"�-�'�	��
�-##$�
� � ��
���� � �����"�"��
� � � �
!����.�"�.���	��
�.##$�
� � � � ����� #�� ����������.�� ��

'������.��-������������
� � �)���������-��������
� � ��
��

It can be noticed that at each iteration of the most nested loop we

have to calculate anew the memory address of the proper elements of the

multiplicated matrices, namely, the addresses of the elements ���������� �

and !������ ����. It is highly ineffective. In the next item we present a fast

C++ matrix multiplication algorithm that enables to avoid determining

those two data memory addresses anew in each iteration.

4. The fast C++ matrix multiplication algorithm

4.1 Problem analysis

In item 2 we showed how to use the pointers in the sequential

iterating through one dimensional table. The problem of the pointer

iteration through two dimensional matrices is a more sophisticated one.

We illustrated the necessary pointer paths in the matrix A by B

multiplication in figure 3.

Double pointer shirting window C++ algorithm…

53

Figure 3. The pointer iteration paths in the matrix multiplication process

In figure 3 we can observe the following:

• The pointer iteration along a fixed matrix row is a relatively simple

task. This task is in fact equivalent to the iteration through the

ordinary dimensional table explained in item 2. The simplicity of this

task arises from the fact that a single matrix row occupies a coherent

block in the operating memory.

• The problem significantly complicates when it comes to the pointer

iteration along a matrix column. In this task we have to iterate over a

series of the row tables. Each row is usually placed in a different

memory location, as we presented in item 0.

The effective solution of that problem is the crucial part of this article

and we presented it in the next chapter.

4.2 The main idea of the proposed C++ matrix multiplication

algorithm

To eliminate the problem of the time consuming iteration along the

matrix columns we proposed the following solutions:

• Introduction of an auxiliary pointer table "�!. In that table we store

the addresses of the current column elements, initializing them by the

addresses of the first column cells of the B matrix (code line 11 in

item 0). Next, we sequentially increment each pointer value in the

pointer table "�! (26th code line). This way we get a shifting memory

window, enveloping a single matrix column. This idea is clearly

illustrated in figure 4.

������� ������� ������� �����
�

������� ������� ������� �����
�

������� ������� ������� �����
�

!������ !������ !������ !������

!������ !������ !������ !������

!�
���� !�
���� !�
���� !�
����

Jerzy Stefan Respondek

54

Figure 4. Shifting the memory window

The most nested loop code (line 22) of the proposed algorithm

deserves a closer look. It adds the subsequent scalar terms of the form

ik kja b , due to the definition 0. It has the following form:

����������	
��������	��(2)

The sub-expression: ���"	!�� performs 3 tasks at once:

- gets the value of the current B matrix cell (sub-expression ��"	!),

- multiplies it by the value of the proper cell of the A matrix,

- finally post-increments the value of the "	!�pointer, shifting it to the

next matrix cell.

• Changing the order of calculations of the matrix product. The classic

matrix multiplication algorithm (ch.0) calculates the elements of the

C AB= matrix in the natural row-by-row order. In the advanced

multiplication algorithm we changed the calculation order of the

C AB= matrix to the column-by-column order. It enabled to

minimize the number of necessary memory window shifting moves

"	!

"	!���

!������ !������ !�������� !������

!������ !������ !������

!�
���� !�
���� !�
����

!��������

!�
������

"	!���

"	!�
�

 j-th
 c

o
lu

m
n

 (j+
1

)-th
 c

o
lu

m
n

p2B++

p2B++

p2B++

p2B++

++*p2B

++*p2B

++*p2B

Double pointer shirting window C++ algorithm…

55

(26th code line) thanks to moving this operation to the least nested

loop.

It is worth to notice that the code (2) requires no integer

multiplication to determine the addresses of the ,ik kja b matrix cells.

Instead we use the highly C++-oriented fast code involving advanced

double pointer iteration. That is just the main advantage of the proposed

C++ algorithm and the reason why it is so efficient.

4.3 The final C++ matrix multiplication algorithm code

The innovations proposed in the previous item lead to the following,

final C++ code for the fast matrix multiplication:
�

&�/� �����&'����&)��
0�/�
1�/� ����������	��

����22�)��'�
3�/� (���� 4�
�*���
��*�������+!���
������

,�����
������,'����
������,)$�
5�/� ��
6�/� � ����

��
&���
��
�	��
&���	��
�	��
0�'�	��
��
7�/� � ������-�.��
8�/� � ��������
9�/� � ��

���&����0�����0'��&'����1'�'���������0)��&)����1)�)�������
&"/� �
&&/� � �
!.�"�.�	��
&�.##$���0'##���1'##��
&0/� � �
!.�"�.�
��
&�.##$���0)##���1)##��
&1/�
&3/� � �
!-�"�-�	��
0�-##$�
&5/� � ��
&6/� � � �&����������0)�)�&��
&7/� � � �
!��"���
��
&��##$�
&8/� � � ��
&9/� � � � �0����&�##��0'��&'��
0"/� � � � �����"�"��
0&/� � � � �
!.�"�.�	��
&�.##$�������������������
00/� � � � � ����� #�� ��0�##� ��

���0'##��
01/� � � � ���0)##���������
03/� � � ��
05/� � � �0'��&'��0)��&)��
06/� � � �
!.�"�.�	��
&�.##$�##��0'##��
07/� � � �
!.�"�.�
��
&�.##$�##��0)##��
08/� � ��
09/� ��
�

Jerzy Stefan Respondek

56

The meaning of the variables is as follows:

-�
�������– loop working variables,

- ���� – the variable storing the temporary value of the scalar

product,

- ������� ������� ����	 – number of the respective matrix rows and

columns,

-
��� – matrices to be multiplied,

- � – result of the matrix multiplication, with respect to the formula

C AB= ,

- ��
���������� – auxiliary pointers.

5. The performance tests

In this chapter we present the results of the performance tests we

performed to verify the robustness of the proposed fast C++ matrix

multiplication algorithm 0. The test was performed on the Intel™ Core i7

workstation under the Visual Studio™ Ultimate 2010 suite with the

control of the Windows 7 64bit operating system. We stored the

following:

• The matrix multiplication time for both the classic matrix

multiplication algorithm (item 0) and the fast one (item 0) – the

results are presented in fig. 5 for the 32-bit code and in fig. 7 for the

64-bit one.

• The received execution time shortage of the fast algorithm with

respect to the classic one – similarly, Figure 6 presents the received

results for the 32-bit code and fig. 8 for the 64-bit one.

Then we performed the execution time tests for the square matrices of

the dimensions ranging from 10 10× up to 4000 4000× .

Figure 5. Execution time for the 32bit code

Figure 6. Execution time boost for the 32bit cod

Double pointer shirting window C++ algorithm…

57

. Execution time for the 32bit code

. Execution time boost for the 32bit code

+ algorithm…

Jerzy Stefan Respondek

Figure 7. Execution time for the 64bit code

Figure 8. Execution time boost for the 64bit code

We can observe that for both small

matrices the proposed fast C++ matrix multiplicatio

to shorten significantly the necessary calculation

the alg. 0 worth to be published.

Jerzy Stefan Respondek

58

. Execution time for the 64bit code

. Execution time boost for the 64bit code

We can observe that for both small-size, medium-size and large

matrices the proposed fast C++ matrix multiplication algorithm

to shorten significantly the necessary calculation time. Thus we consider

worth to be published.

size and large

thm 0 allows

time. Thus we consider

Double pointer shirting window C++ algorithm…

59

Summary

The main novelty of this article is that we proposed the fast C++

algorithm for the matrix multiplication. The C++ programming language

appeared to be a powerful tool in the matrix multiplication task and

generally in the numerical recipes field.

To sum up, we hope that many researchers and engineers will find the

proposed ready-to-use algorithms useful in their work.

References

[1] Bellman R., Introduction to Matrix Analysis, Society for Industrial

Mathematics, 2nd ed., New York, 1987.

[2] Kernighan B. W., Ritchie D. M., The C Programming Language, 2
nd

edtion Prentice-Hall, New Jersey, 1988.

[3] Stroustrup B., The C++ Programming Language, 4th ed., AT&T

Labs, New Jersey, 2013.

[4] Stroustrup B., The Design and Evolution of C++, Addison-Wesley,

9th ed., Massachusetts, 1994.

[5] Waite W. M., Goos G., Compiler Construction, Monographs in

Computer Science, Springer Verlag, 2nd edition, New York, 1983.

IMPLEMENTACJA W C++ ALGORYTMU MNO�ENIA MACIERZY
W POSTACI PRZESUWNEGO OKNA PODWÓJNYCH

WSKA�NIKÓW

Streszczenie
Celem artykułu jest zastosowanie wska�ników do celu efektywnego mno�enia macierzy.

Głównym problemem jest iteracja poprzez kolumn� macierzy, która grupuje elementy

nieprzylegaj�ce. Do celu rozwi�zania tego problemu zaproponowano przesuwne okno

podwójnych wska�ników. Przeprowadzone testy efektywno�ci potwierdziły wysok�

efektywno�� metody.

Słowa kluczowe: metody numeryczne, C++, algebra numeryczna, algebra liniowa,

mno�enie macierzy, wska�niki, inteligentne wska�niki, iteratory

