
245 
 

 

 

 

     TECHNICAL UNIVERSITY OF CLUJ-NAPOCA 
 

      ACTA TECHNICA NAPOCENSIS 
 

 Series: Applied Mathematics, Mechanics, and Engineering 
                      Vol. 59, Issue III, September, 2016 

 

 
 
 
 

  
 
 

AN ARTIFICIAL NEURAL NETWORK APPROACH TO ESTIMATE THE VISCOSITY 
OF BIODIESEL-DIESEL-ETHANOL BLENDS  

  
István BARABÁS, Adrian TODORUŢ, Nicolae CORDOŞ 

 
 

Abstract: In order to estimate the viscosity of biodiesel-diesel fuel-bioethanol blends viscosity data of 15 

ternary blends - measured between 273.15 K and 343.15 K - were used. Two artificial neural networks, 

with one and two neurons, were built using the temperatures and the compositions of the blends as input 

and the corresponding viscosities as output. The neural networks had been trained using 70% of the data 

and were tested and validated, using 15% of remained data for each of these actions. The precisions of 

the resulted models were compared with the precision of a simple additive and a semilogarithmic model 

developed in our earlier work. We found that the artificial neural network with two neurons had the 

strongest correlation (R2 = 0.9982) and the lowest standard deviation (RMSE = 0.0968).   
Key words: viscosity, model, artificial neural network, biodiesel, bioethanol, diesel fuel. 

 
1. INTRODUCTION  
  
 Due to the fast growth of energy consump-
tion and the rapid depletion of fossil fuel re-
serves [4], many research works have been fo-
cused to identifying alternative solutions for 
partial or total substitution of fossil fuels with 
alternative, renewable and sustainable ones [2]. 
In case of internal combustion engines, the 
most promising renewable fuels are the bio-
diesel and the bioethanol [5], both of them had 
already been standardized in the European Un-
ion as blending components for fossil fuels. 
The current quality standard of diesel fuel (EN 
590) permits the introducing biodiesel obtained 
from rapeseed oil in the fossil diesel up to 
7 % v/v.  
 The biodiesel quantity blended in fossil die-
sel is limited mainly because its higher density 
and viscosity, and lower energy content and 
oxidation stability of the biodiesel in compari-
son to fossil diesel [2]. 
 Among other fuel properties, the viscosity is 
of great importance not only in the quality of 
air-fuel mixture – characterized by the atomiza-
tion quality, the size of fuel droplet, and the jet 
penetration in combustion chamber, but also in 
its combustion and emission characteristics [1].  

 The viscosity of the fuel must be low enough 
to flow easily even at low environmental tem-
peratures, but a too low viscosity may cause 
leakages in the fuel system of the engine. Too 
high viscosity may cause poor fuel atomization, 
incomplete combustion, increased specific fuel 
consumption and engine deposits. Moreover, a 
too high viscosity of the fuel can produce prob-
lems in cold weather because the viscosity in-
creases as the temperature decreases. In addi-
tion, because of the dependence between vis-
cosity and lubricity, the viscosity of the fuel 
also affects the lubrication of injectors and fuel 
pump. Consequently, the diesel-fuel standard 
limits the viscosity both lower and upper.  
 The increased viscosity of the fossil diesel–
biodiesel blend can be reduced by adding in it a 
low viscosity fuel, e.g. bioethanol.  
 In order to determine the proper composition 
of resulting biodiesel–fossil diesel–bioethanol 
ternary blends the prediction of their viscosity 
as function of their composition and tempera-
ture becomes an important issue. 
 In our previous work [3] we have published 
two models to predict the viscosity of these 
types of ternary blends. Although these models 
predicted very accurately the viscosity of ter-
nary blends, they are only able to predict the 
viscosity of the ternary blends at the tempera-
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ture at which the viscosities of the constituents 
are known. In other words, this approach as-
sumed a two-step modelling: 1 - modelling the 
temperature dependence of viscosity of their 
constituents, 2 - using a proper mixing rule to 
estimate the viscosity of blend at a certain tem-
perature. 
 The aim of the present work is to establish 
new models capable to predict the viscosity of 
biodiesel–fossil diesel–ethanol blends taking 
account of both their composition and tempera-
tures, using an artificial neural network ap-
proach. The artificial neural network method is 
a powerful modelling tool which is able to 
identify complex relationships among experi-
mental inputs and outputs. 
  
2. EVALUATION OF THE MODELS 
 
 In order to evaluate the accuracy and com-
pare the viscosity models, the following statis-
tical indicators were used: 
– the average absolute deviation, AAD, or av-

erage absolute error: 
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estimated kinematic viscosity, and N is the 
number of experimental values;  
– the absolute average relative deviation, 
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– the root mean squared error, RMSE:  
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– the correlation coefficient: 
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where expν  and estν  are the average values of 

the measured and estimated viscosities and m is 
the number of model parameters. 
  
3. PREDICTING VISCOSITY AND 
DENSITY USING ARTIFICIAL NEURAL 
NETWORKS 
 
 The model proposes an evaluation of viscos-
ity and density of biodiesel-diesel fuel-ethanol 
blends through a multi-input single-output 
(MISO) artificial neural network. Network in-
puts are the temperature T (K) and the composi-
tion of the blend, expressed in volume fractions 
fB for biodiesel, fD for diesel fuel and fE for eth-
anol, and the output ν is the kinematic viscosity 
(mm2/s). Two internal ANN architectures were 
evaluated: with a single neuron, ANN1 and 
with two neurons, ANN2 (Fig. 1).  
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Fig. 1. Structure of the ANN model for estimating the kinematic viscosity  
(wl – weighting factors, bl – biases, af – activation functions). 

 The activation function of hidden layers was 
of 'tansigmoid' type, and the activation function 
of output layer was of 'purelin' type. 
 Using the MathWorks-Simulink program, 
132 sets of input data [3] were divided into 
three groups: training (comprising 70% of input 
data), testing and validation (each of the latter 
two consisting of 15% of input data). For net-
work parameter evaluation 10 runs were carried 
out and those with maximum accuracy were 
considered. 
 At the ANN1 model with one neuron for 
predicting kinematic viscosity the following 
equation was obtained: 
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where a0=149.6076; a1= -2.7919; b=148.5454; 
A=11.0048; B=9.9305; C=8.9640; D= -0.0382, 
while at the ANN2 model with two neurons the 
equation has the following form: 
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where a0=6.0265; a1=0.1144; a2=24.8065;  
b1=499.6247; b2=-5.1418; A11=-5.3287;  
B11=-4.44769; C11=-2.0403; D11=0.0321;  
A21=2.4417; B21=6.5553; C21=21.0010;  
D21=-0.1276. 

Expressing diesel fuel content depending on 
the biodiesel and ethanol content: 
 
 EBD vvv −−=1 , (7) 
 
and replacing the previous equations, the fol-
lowing are obtained: 
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where a0=149.6076; a1=7.1386; b=148.5454;  
A=1.0743; C=-0.9665; D=-0.0382, in the case 
of the architecture with a single neuron, and 
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where: a0=6.0265; a1=-4.3332; a2=31.3618;  
b1=499.6247; b2=-5.1418; A11=-0.8811;  
C11=2.4073; D11=0.0321; A21=-4.1136;  
C21=14.4547; D21=-0.1276, in the case of the 
architecture with two neurons. 
 
4. DISCUSSION  
 
 The accuracy of the model with two neurons 
is significantly higher than that of the model 
with a single neuron, 90% of estimated values 
having a relative error below 4%, while in case 
of the model with a single neuron only 59% 
have a relative error below this value (Fig. 2). 
 

 
Fig. 2. Distribution of relative errors for the  

ANN models. 
 
 In order to evaluate the developed models, 
they have been compared with other models, 
published in our previous work [3]. The first 
was a weighted semilogarithmic model (WSL):  
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where kB, kD and kE are the weighting factors of 
biodiesel, diesel fuel and ethanol, fB, fD and fE 
are the volumetric fractions of the fuels and νB, 
νD and νE are their kinematic viscosity. The 
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second model was a simple weighted additive 
model (SWA): 
 EEEDDDBBBblend fkfkfk ν+ν+ν=ν .  (11) 
 

The weighting factors in equations (10) and 
(11) were obtained using Solver in Excel and 
minimizing the AAD (Table 1).  
 The statistical accuracy-indicators of the 
models for evaluating the kinematic viscosity 
of biodiesel-diesel fuel-ethanol blends are pre-
sented in Table 2. It can be seen that the best fit 
is provided by the ANN2 model, having the 
lowest AARD, AAD and RMSE and the 
strongest correlation. This model is followed in 
accuracy by the SWA model. The worst corre-
lation is yielded by the WSL model. This model 
provides the best accuracy if the composition is 
expressed in mass fractions. The accuracy of 
the SWA model is the highest when the compo-
sition of the blend is given in mole fractions 
[3]. 
 

Table 1 

 Values of the weighting factors in equations (10) and 
(11) and accuracy of the predictions 
Model kB kD kE 

WSL, eq. (10) 1.1443 0.8860 1.1842 
SWA, eq. (11) 1.0119 0.8850 -0.0783 

 
Table 2 

 Statistical indicators for evaluation of ANN models 
Model AARD, 

% 
AAD, 

% 
RMSE R2 

ANN1, eq. (8) 4.3646 0.1327 0.2283 0.9896 
ANN2, eq. (9) 2.1946 0.0654 0.0968 0.9982 
WSL, eq. (10) 5.2975 0.1458 0.2122 0.9861 
SWA, eq. (11) 2.6416 0.0847 0.1431 0.9960 

 
 The correlation between the measured and 
estimated values of kinematic viscosity is 
shown in Figure 3. In the case of the weighted 
semilogarithmic model and the weighted addi-
tive model the largest errors were found at low 
temperatures, especially in blends where the 
ethanol content was higher than the biodiesel 
content. This is because biodiesel cannot pro-
vide the solubility of the blend at these temper-
atures. For both models the estimated values 
are lower than those measured in approx. 70% 
of the cases. 
 The model obtained by ANN with a single 
neuron provides values equally over- and un-
der-evaluated, and in the case of the model with 

two neurons approx. 60% of the estimated val-
ues are higher than those measured. 
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Fig. 3. Correlation between measured and estimated 
values of kinematic viscosity: a – equation (8), b – equa-

tion (9), c – equation (10), d – equation (11). 
The models evaluated in this paper can be 

used for predicting viscosity of biodiesel-diesel 
fuel-bioethanol blends, providing useful infor-
mation on the preparation of mixtures respect-
ing the viscosity limitations given by quality 
standards for diesel fuels or for combustion 
process modelling of fuel-air mixtures. Figure 4 
shows the kinematic viscosity variation of the 
blends studied based on their composition at 
40 °C using the ANN2 model. 
 

 
Fig. 4. Kinematic viscosity variation of biodiesel-diesel 

fuel-bioethanol blends based on their composition. 
 
5. CONCLUSIONS  
  

The models evaluated in this paper can be 
used for predicting viscosity of biodiesel-diesel 
fuel-bioethanol blends, providing useful infor-
mation on the preparation of mixtures respect-
ing the viscosity limitations of quality standards 
for diesel fuels or for combustion process mod-
elling of fuel-air mixtures.   

1. Most of the models evaluated for de-
termining viscosity of biodiesel-diesel 
fuel-ethanol blends can be used to esti-
mate their kinematic viscosity. 

2. The complexity of the models evaluated 
for estimating viscosity of biodiesel-
diesel fuel-ethanol blends is not always 
reflected in their accuracy. The results 
provided by the weighted additive mod-
el are comparable to ANN2.  

3. The models can be used depending on 
the accuracy needed for the actual ap-
plication they are used in.  

4. The models obtained by ANN have the 
highest degree of generality, providing a 
viscosity-estimation of biodiesel-diesel 
fuel-ethanol blends depending on tem-
perature and their composition through 
a single formula. The advantage of 
ANN models is that they are not based 
on the viscosity models of the compo-
nents like the other methods, and the 
temperature range in which they can be 
used is 0-70 °C. 

5. The parameters of the models evaluated 
and those proposed are determined for 
the fuels used in the experimental re-
search of this paper. Given that bio-
diesel and diesel fuel composition de-
pends on the nature and quality of the 
raw materials / components from which 
they are produced, the models devel-
oped in this paper can be used for other 
types of biodiesel and diesel fuels, tak-
ing the differences into account. Con-
sidering that the methods for determin-
ing the parameters of the models are de-
scribed in detail, their adaptation to 
fuels with different characteristics is 
easy.  

6. ANN2 can be considered the most accu-
rate model, followed by the weighted 
additive model, the weighted semiloga-
rithmic model and ANN1. 

.  
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ESTIMAREA VISCOZITĂŢII AMESTECURILOR DE BIODIESEL–MOTORINĂ–BIOETANOL 
UTILIZÂND REŢELE NEURONALE ARTIFICIALE 

 
Rezumat: Pentru estimarea viscozității cinematice a amestecurilor de biodiesel–motorină–bioetanol au fost utilizate 
viscozitățile măsurate în intervalul de temperatură 273,15 K și 343,15 K a 15 amestecuri. În scopul estimării viscozității 
cinematice a amestecurilor au fost construite două rețele neuronale artificiale cu unul respectiv doi neuroni, utilizând ca 
și date de intrare temperatura și compoziția amestecurilor, iar ca mărime de ieșire viscozitatea cinematică a fiecărui 
amestec. Rețelele neuronale au fost instruite utilizând 70% din setul de date, iar câte 15% au fost utilizate pentru 
testarea și validarea modelelor. Pentru identificarea preciziei modelelor, astfel obținute, acestea au fost comparate cu 
alte doua modele dezvoltate anterior, unul semilogaritmic ponderat și altul aditiv ponderat. Modelul obținut prin rețeaua 
neuronală artificială cu doi neuroni a furnizat corelația cea mai puternică (0,9982) și abaterea medie pătratică cea mai 
mică (0,0968). 
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